The **assembly line feeding problem** (abbr. ALFP) describes a problem in operations management concerned with finding the optimal way of feeding parts to assembly stations.[1] For this, various cost elements may be taken into account and every part is assigned to a policy, i.e., a way of feeding parts to an assembly line. The most common policies are:

- Line stocking (also: line side stocking, pallet to work-station, etc)
- Boxed-supply (also: Kanban, batch supply, etc.)
- Sequencing
- Stationary kitting (also: indirect supply, trolley to workstation)
- Traveling kitting (also: indirect supply, kit to assembly line)

These policies differ with respect to the way parts are brought to the line as well as in the way parts are handled before they are brought to the line. E.g., in line stocking, parts are brought to the line directly in the way they are stored in the warehouse. In the other policies, quantities are reduced (boxed supply) and different part variants are sorted in the order of demand (sequencing, stationary, and traveling kitting).

## . . . Assembly line feeding problem . . .

The problem was formally introduced by Bozer and McGinnis[2] in 1992 by means of a descriptive cost model. Since then, many contributions have been made in both, quantitative and qualitative manners. E.g., a more qualitative contribution is done by Hua and Johnson[3] investigating important aspects of the problem, whereas more recent contributions focus rather on quantitative aspects and use mathematical optimization to solve this assignment problem to optimality [4][5][6][7]

${displaystyle {begin{aligned}{text{minimize:}}\C&=sum _{iin I}sum _{sin S}sum _{pin P}chi _{isp}cdot c_{isp}^{v}+sum _{sin S}sum _{pin P}psi _{sp}cdot c_{sp}^{f}+sum _{pin P}Omega _{p}cdot c_{p}^{f}\{text{subject to:}}\sum _{pin P}chi _{isp}&=min{1,lambda _{is}}&forall &iin I~forall sin S\{underset {iin I}{operatorname {max} }}~{chi _{isp}}&leq psi _{sp}&forall &sin S~forall pin P\{underset {iin I,sin S}{operatorname {max} }}~{chi _{isp}}&leq Omega _{p}&forall &pin P\chi _{isp}&in {0,1}&forall &iin I~forall sin S~forall pin P\psi _{sp}&in {0,1}&forall &sin S~forall pin P\Omega _{p}&in {0,1}&forall &pin Pend{aligned}}}$

This model minimizes the costs

${displaystyle c_{isp}}$when assigning all parts (index:i) to a feeding policy (index:p) at all stations (index:s)

${displaystyle chi _{isp}=1}$, if there is a demand for a part at a station

${displaystyle lambda _{is}>0}$. Using a certain policy at a station

${displaystyle psi _{sp}=1}$incurs some cost

${displaystyle c_{sp}}$as well as some other costs

${displaystyle c_{p}}$are incurred when a policy is used at any station

${displaystyle omega _{p}=1}$.

All assembly line feeding problems of this type have been proven to be NP-hard[1]

## . . . Assembly line feeding problem . . .

*
This article is issued from web site Wikipedia. The original article may be a bit shortened or modified. Some links may have been modified. The text is licensed under “Creative Commons – Attribution – Sharealike” [1] and some of the text can also be licensed under the terms of the “GNU Free Documentation License” [2]. Additional terms may apply for the media files. By using this site, you agree to our Legal pages . Web links: [1] [2]
*